Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent adaptive radiations provide experimental opportunities to parse the relationship between genomic variation and the origins of distinct phenotypes. Sympatric radiations of the charr complex (genus Salvelinus) present a trove for phylogenetic analyses as charrs have repeatedly diversified into multiple morphs with distinct feeding specializations. However, charr species flocks normally comprise only two to three lineages. Dolly Varden charr inhabiting Lake Kronotskoe represent the most extensive radiation described for the genus, containing at least seven lineages, each with defining morphological and ecological traits. Here, we perform the first genome-wide analysis of this species flock to parse the foundations of adaptive change. Our data support distinct, reproductively isolated lineages within the clade. We find that changes in genes associated with thyroid signaling and craniofacial development provided a foundational shift in evolution to the lake. The thyroid axis is further implicated in subsequent lineage partitioning events. These results delineate a genetic scenario for the diversification of specialized lineages and highlight a common axis of change biasing the generation of specific forms during adaptive radiation.more » « less
-
Synopsis Static stability is a property inherent to every organism. More stable bodies benefit from a lower energy cost associated with maintaining a desired orientation, while less stable bodies can be more maneuverable. The static stability of a fish is determined by the relative locations of its center of mass (COM) and center of buoyancy (COB), which may change with changes in swim bladder volume. We hypothesized, however, that fish would benefit from consistent static stability, and predicted that changes in swim bladder volume would not alter the overall pattern of COM and COB locations. We used micro-computed tomography to estimate the locations of the COM and COB in bluegill sunfish (Lepomis macrochirus). Using this technique, we were able to find a small but significant difference between the location of the COM and COB for a given orientation. We found that the swim bladder can change shape within the body cavity, changing relative locations of the COM and COB. At one extreme, the COB is located 0.441 ± 0.007 BL from the snout and 0.190 ± 0.010 BL from the ventral surface of the pelvic girdle, and that the COM is 0.0030 ± 0.0020 BL posterior and 0.0006 ± 0.0005 BL ventral to the COB, a pattern that causes a nose-up pitching torque. At the other extreme, the COM is anterior and dorsal to the COB, a pattern that causes the opposite torque. These changes in location seems to be caused by changes in the shape and centroid location of the swim bladder within the body: The centroid of the swim bladder is located significantly more posteriorly in fish oriented head-down. The air in the bladder “rises” while heavier tissues “sink,” driving a change in tissue distribution and changing the location of the COM relative to the COB. Supporting our hypothesis, we found no correlation between swim bladder volume and the distance between the COM and COB. We conclude that bluegill are statically unstable, requiring them to expend energy constantly to maintain their normal orientation, but that the pitch angle of the body could alter the relative locations of COM and COB, changing their static stability.more » « less
-
Synopsis By linking anatomical structure to mechanical performance we can improve our understanding of how selection shapes morphology. Here we examined the functional morphology of feeding in fishes of the subfamily Danioninae (order Cypriniformes) to determine aspects of cranial evolution connected with their trophic diversification. The Danioninae comprise three major lineages and each employs a different feeding strategy. We gathered data on skull form and function from species in each clade, then assessed their evolutionary dynamics using phylogenetic-comparative methods. Differences between clades are strongly associated with differences in jaw protrusion. The paedomorphic Danionella clade does not use jaw protrusion at all, members of the Danio clade use jaw protrusion for suction production and prey capture, and members of the sister clade to Danio (e.g., Devario and Microdevario) use jaw protrusion to retain prey after capture. The shape of the premaxillary bone is a major determinant of protrusion ability, and premaxilla morphology in each of these lineages is consistent with their protrusion strategies. Premaxilla shapes have evolved rapidly, which indicates that they have been subjected to strong selection. We compared premaxilla development in giant danio (Devario aequipinnatus) and zebrafish (Danio rerio) and discuss a developmental mechanism that could shift danionine fishes between the feeding strategies employed by these species and their respective clades. We also identified a highly integrated evolutionary module that has been an important factor in the evolution of trophic mechanics within the Danioninae.more » « less
An official website of the United States government
